
MUELLES DE PLATILLO

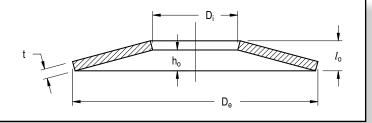
MUELLES DE PLATILLO

Las ventajas de los muelles platillo frente a otros tipos de resortes y muelles son, entre otras:

- Un amplio rango de combinaciones carga/deflección
- Alta absorción de fuerzas con pequeñas deflecciones
- Ahorro de espacio altos ratios fuerza-tamaño
- No colapsan cuando trabajan dentro de las cargas de diseño
- · Mayor vida en condiciones de fatiga
- Amortiguación inherente, particularmente con apilados en paralelo
- Amplias posibilidades de combinación de apilados para dar respuesta a los requisitos de cada aplicación

mm

DESIGNACION DIMENSIONAL


D_e = Diámetro externo del muelle

D_i = Diámetro interno del muelle

 l_{o} = Altura de muelle libre

t = Espesor del material

h_o = Altura de cono libre

SIMBOLOS Y UNIDADES DE MEDIDA EN APLICACIONES CON MUELLES DE PLATILLO

F = Fuerza o carga aplicada N

s = Deflección resultante bajo una cierta fuerza

 σ = Tensión MPa

E = Módulo de elasticidad MPa

u = Coeficiente de Poisson Adimensional

MUELLES DE PLATILLO

GAMA ESTANDAR DE PRODUCTO

GAMA DIN EN 16983 (anteriormente DIN 2093)

SPIROL ofrece la gama completa de la norma DIN EN 16983 (anteriormente DIN 2093), grupos 1 y 2, series A, B y C.

GAMA ESTÁNDAR SPIROL

Además de los tamaños especificados en la norma DIN, SPIROL mantiene en stock su propia gama estándar de diámetros externos de 8mm a 200mm para dar respuesta a las necesidades de las diversas aplicaciones de nuestros clientes. Los muelles de platillo SPIROL cumplen todas las especificaciones de material, tolerancias dimensionales, y especificaciones de calidad de la norma DIN EN 16983 (anteriormente DIN 2093), pero en diámetros y espesores que no están incluidos en la norma DIN.

DEFINICIÓN PRODUCTO ESTÁNDAR

CARACTERÍSTICA	GRUPO 1	GRUPO 2
ESPESOR	<1,25mm	1,25mm ≤ t ≤ 6mm
MATERIAL	Código B – Acero alto carbono	Código W – Acero aleado
	C67S (1.1231) / UNS G10700	51CrV4 (1.8159) / UNS G61500
DUREZA	HV 425-510 (HRC 43-50)	HRC 42-52 (HV 412-544)
ACABADO	Código R – Fosfatado al zinc y ac	eitado

Dentro de cada grupo hay tres series – A, B y C. Dichas series se diferencian por los espesores de material y las gráficas fuerza/deflección que esa diferencia genera (ver página 2). La norma DIN EN 16983 (anteriormente DIN 2093) clasifica las tres series por los siguientes ratios:

SERIES A	$D_e/t \approx 18$	$h_o/t \approx 0.4$
SERIES B	$D_e/t \approx 28$	$h_o/t \approx 0.75$
SERIES C	$D_e/t \approx 48$	$h_o/t \approx 1.3$

Ver páginas 10-14 para la gama SPIROL.

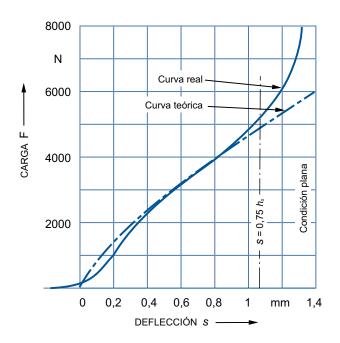
Además de la oferta estándar, SPIROL ofrece una línea de Muelles de Platillo de Acero Inoxidable austenítico.

MATERIAL	Código D – SAE 301 Acero Inoxidable endurecido
	(X10CrNi18-8 No 1.4310 / UNS 30100)
ACABADO	Código K − Bruto, sin aceite

Ver página 15 para la oferta SPIROL.

ESPECIALES

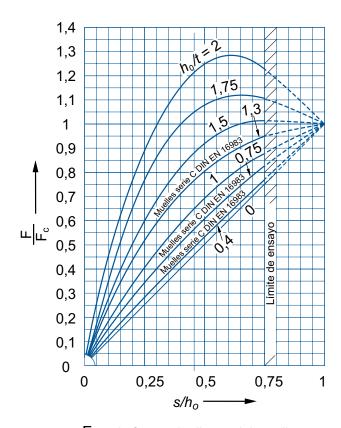
SPIROL trabajará con Ud. para desarrollar muelles de platillo que satisfagan los requerimientos de su aplicación específica. Algunos parámetros a tener en consideración son las fuerzas, parámetros de trabajo, entrono, ciclo, y vida útil deseada. SPIROL puede proporcionar dimensiones especiales. materiales, acabados, y empaquetados a medida de la aplicación.


PARA PASAR PEDIDOS: Producto / D_e x D_i x t / código de material / código de acabado

DSC 25 x 12,2 x 0,7 BR EJEMPLO:

CARACTERISTICAS DE LOS MUELLES DE PLATILLO

DEFLECCION TEORICA FRENTE A REAL


En el rango inferior, la curva de medidas reales difiere ligeramente de la teórica debido a tensiones residuales.

En los valores medios – rango de trabajo habitual – la deflección medida es prácticamente coincidente con la teórica.

Al ir aumentando la deflección el brazo de la fuerza se va reduciendo y la fuerza necesaria aumenta sustancialmente. Cuando la relación s/h_o excede 0,75 la desviación respecto a la teórica aumenta exponencialmente. Por esta razón, la predictibilidad fuerza/deflección queda limitada al 75% de la deflección máxima (h_o).

El gráfico muestra la curva característica de un muelle de platillo DIN EN 16983 (anteriormente DIN 2093), grupo 2, serie B $50 \times 25,4 \times 2$.

RELACION CARGA/DEFLECCION

F_c es la fuerza de diseño del muelle en la posición plana.

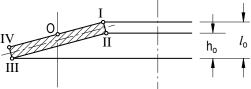
La relación carga/deflección de un único muelle no sigue una línea recta. Su forma depende del ratio altura de cono (h_o) a espesor (t) (h_o/t). Si este ratio es pequeño, 0,4 (DIN Serie A), la curva característica es prácticamente una recta. A medida que el ratio h_o/t aumenta la relación carga/deflección es cada vez más curva.

Hasta un ratio de 1,5, los muelles se pueden llevar a su posición plana sin riesgos.

En el ratio 1,5 la curva es plana para un extenso rango de deflección, lo que resulta muy útil en la compensación de desgastes.

Por encima de 1,5 las características de regresión del muelle son mayores y es capaz de revertirse por lo que debe sujetarse apropiadamente.

En ratios superiores a 2, los discos pueden revertirse en posición plana.


TENSIONES DE CARGA

PUNTO DE TENSIÓN CRÍTICA

Cuando se carga un Muelle de Disco, se genera una tensión de compresión en los puntos I y IV. La tensión de compresión normalmente actúa en la parte superior de la superficie del disco

En el punto teórico (0) entre los puntos I y IV, la tensión no debe exceder del límite de elasticidad del material del disco (1,400 – 1,600 MPa para los materiales especificados) para asegurar que no se produzcan deformaciones permanentes (set).

La tensión de tracción en los puntos II y III es la base para los cálculos del tiempo de fatiga. La tensión de tracción normalmente actúa en la parte inferior de la superficie del disco.

CARGA ESTÁTICA

La carga estática se define como el transporte de una carga constante o una carga ocasional en intervalos de tiempo relativamente largos sin exceder de los diez mil ciclos por vida de diseño. En estos casos la tensión más alta calculada en el punto 0 es la más crítica y no debería exceder de los 1400-1600 MPa. El alcance estándar de un Muelle de Disco puede usarse en condiciones de carga estática sin la necesidad de realizar cálculos de tensión teórica. Bajo estas condiciones, la configuración de los discos no es un factor con tensiones superiores a $S=0.75\,h_{\rm a}$.

CARGA DINÁMICA

Uno de los beneficios clave de usar los Muelles de Disco DIN es el hecho de que se pueden usar en aplicaciones cíclicas de alta frecuencia en las que el tiempo de fatiga es lo más preocupante. Para obtener el mayor beneficio de los Muelles de Disco, existen algunas consideraciones que se debe tener en cuenta. De manera simple, las siguientes técnicas le ayudarán a asegurarse de que elige el Muelle de Disco más adecuado para cumplir con los requisitos de la aplicación.

Entender la aplicación:

Conocer la carga del Muelle de Disco es crucial y requiere detalles específicos acerca de aspectos como la precarga, las fuerzas de trabajo, el desplazamiento, el perfil de movimiento y la frecuencia. Otros factores como la vida útil requerida, la temperatura de trabajo y las condiciones ambientales que pueden requerir protección contra la corrosión o requerimientos de limpieza, contribuirán a la resistencia real a la fatiga y se deben tener en cuenta.

Diseño para minimizar la tensión:

El tiempo de fatiga del Muelle de Disco está directamente relacionada con la magnitud de las tensiones desarrolladas en la zona en la que avanza. Esto se aplica tanto a la tensión máxima desarrollada durante la parte del ciclo con la carga más alta como a la tensión diferencial entre la carga completa y la condición sin carga o precargada.

Seleccionar la configuración adecuada:

Para minimizar las tensiones en esa parte, a menudo se recomienda utilizar la capacidad del Muelle de Disco para ser orientados en pilas preensambladas que consisten en Discos en serie o en paralelo. Los discos en paralelo permiten aumentar la fuerza para un tamaño de disco determinado, mientras que los discos en serie permiten mayores longitudes de carrera para la aplicación. Ambas acciones permitirán minimizar la tensión generada en cada disco, con la consiguiente extensión de su vida útil.

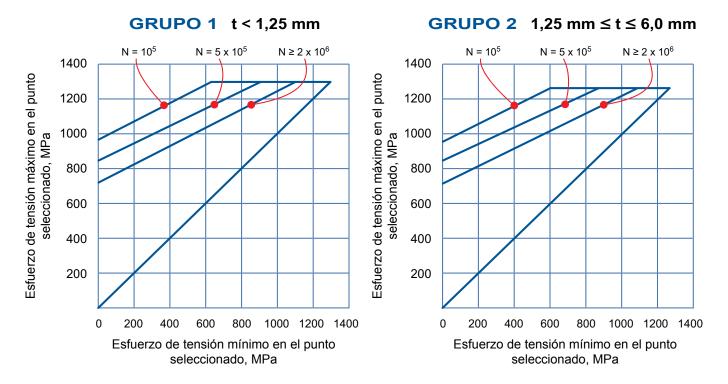
TIEMPO DE FATIGA

El proceso para estimar el tiempo de fatiga de un Muelle de Disco es por naturaleza iterativo. No es posible seleccionar un determinad tiempo de fatiga y, a continuación, retroceder hasta llegar a la configuración del Muelle de Disco. Los pasos básicos para estimar el tiempo de fatiga son los siguientes:

- 1. Determine los requerimientos de aplicación en el estado de menor carga. Esto debería especificar la fuerza requerida a ejercer para el Muelle de Disco en las condiciones de compresión mínima.
- Determine la condición de carga completa del Muelle de disco. Esto puede ser especificado por la longitud del recorrido o por una carga adicional que se ejercerá en el Muelle de Disco.
- Usando la información previamente indicada, seleccione la configuración del Muelle de Disco que sea capaz de trabajar en una aplicación estática. Esto tendría que basarse en:
 - El tamaño y la serie de los discos, de manera que una precarga mínima de aproximadamente 15%-20% de la carga máxima del disco se mantenga en todo momento. Si la precarga no se mantiene, es posible que el Muelle de Disco falle en el borde superior ID debido a la tensión compresiva inversa.
 - La cantidad de discos para acomodar el recorrido requerido. La flexión máxima no debe exceder la compresión recomendada del disco.
 - La orientación y la cantidad de discos para que el límite de carga no se exceda durante la parte más cargada de la aplicación.
 - Como regla general, es mejor usar Muelles de Disco más grandes y de carga ligera (series B o C) en la aplicación que Muelles de Disco más pequeños y de mayor carga (Serie A).
- 4. Usando el tamaño seleccionado del Muelle de Disco, determine la compresión que estará presente en las dos condiciones extremas. Si solo se conocen las fuerzas, entonces se necesitará realizar cálculos para determinar cúal será la compresión. Estos pueden interpolarse a partir de los valores del catálogo o determinarse de forma independiente usando las fórmulas proporcionadas en DIN EN 16984. Cuando use las fórmulas, tanto la tensión como la fuerza del resorte resultante son los determinados por la compresión del Muelle de Disco.
- 5. Para el Muelle de Disco seleccionado, determine cuál será el punto crítico del Disco. Dependiendo de qué disco se use, los puntos críticos pueden estar en los siguientes bordes:
 - Base ID Punto IIBase OD Punto III

En la práctica, esta es la mejor manera de evaluar la tensión en ambos puntos. El borde de mayor tensión será el factor limitador para la vida útil del Muelle de Disco.

- Calcule la tensión para los puntos II y III en ambos niveles de compresión. Esto se puede conseguir mediante la interpolación de los valores de las tablas del catálogo, pero es mejor usar las fórmulas proporcionadas en DIN EN 16984, que se han probado exitosas.
- 7. Usando los gráficos de la *Figura 1* y *Figura 2*, determine la intersección de la tensión mínima en la abscisa y de la máxima, en la ordenada.
- 8. Como regla general, lo mejor es mantener el 15%-20% de precarga en el disco en la condición de menor tensión, después minimizar el recorrido requerido por Disco.



TIEMPO DE FATIGA

Los gráficos de más abajo, representan la vida típicamente esperada de los muelles probados bajo condiciones de laboratorio. Para usar correctamente estos gráficos es necesario determinar las tensiones máximas en ambos puntos mínimo y máximo de deflección del muelle. Ya que tanto el punto II como el punto III pueden ser los de máxima carga, se recomienda que ambos sean evaluados y se seleccione el peor de los casos.

Estos valores están basados en pruebas en laboratorio usando equipos de prueba de fatiga que producen ciclos de carga sinuisoidales y obtienen como resultado el tiempo de vida útil con un 99% de probabilidad. Estos resultados son válidos para muelles sueltos y apilados en serie de 10 muelles o menos, utilizando una precarga del 15%-20%. El ensayo está estudiado a la temperatura de la sala y a una frecuencia que no induzca al calentamiento y utilizando superficies endurecidas y pulimentadas y un correcto guiado.

Apilar los discos en paralelos reduce drásticamente el tiempo de fatiga puesto que las desviaciones de discos individuales pueden ser atenuadas gracias a la interacción con el disco adecuado, que resulta en la mayor tensión localizada. Las aplicaciones de alta frecuencia sin la lubricación apropiada también pueden reducir el tiempo de fatiga debido al calor generado por la ficción. El guiado de discos apilados, el diseño de las superficies de contacto y el uso de arandelas endurecidas es de gran importancia en aplicaciones de fatiga. La desalineación de los discos adecuados debe ser uniforme para prevenir los puntos de contacto que provocarán las concentraciones de tensión y fallos prematuros.

Estos resultados solamente aplican materiales de la norma DIN EN 16983 (anteriormente DIN 2093) que no se les haya aplicado un granallado o "shot peening", ya que esta condición aumenta el tiempo de vida útil de ciertos muelles, pero hay que probar en cada caso para determinar exactamente dicha mejora.

DIMENSIONADO Y SELECCIÓN

- Seleccionar el muelle de mayor diámetro exterior posible (D_e). Esto reduce las tensiones bajo un determinado ratio fuerza (F) / deflección (s) aumentando por tanto la vida a fatiga. Utilizar muelles con relación diámetro exterior (D_e) a diámetro interior (D₁) de 1,7 a 2,2 también mejora el desempeño y la longevidad.
- Seleccionar un muelle que al 75% de la deflección total provea la máxima fuerza y/o deflección requerida. La deflección máxima de diseño debería corresponderse el 75% de la altura de cono libre (h_o). La reducción de la deflección aumenta la vida a fatiga.
- Las curvas fuerza/deflección pueden cambiarse variando el ratio altura de cono (h_o) a espesor (t). Se pueden dibujar curvas fuerza/deflección con los datos proporcionados en las páginas 9-14 para valores de deflección del 25%, 50%, 75% y 100%.
- Los discos más gruesos tienen mayores propiedades de amortiguación (histéresis).

VIDA ÚTIL A FATIGA

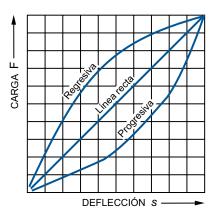
- La vida útil a fatiga se puede mejorar incrementando la precarga y reduciendo la deflección máxima. Generalmente, esto requiere la adición de muelles en apilados en serie, pero extenderá la vida útil.
- El granallado crea favorables tensiones compresivas en la superficie de los muelles. Esta operación reduce la posibilidad de fallo por fatiga debido a tensiones de extensión que comienzan generalmente en la superficie.
- La precarga (presetting o scragging) es una compresión única o repetitiva para llevar a la posición plana a un muelle tratado térmicamente. Las tensiones creadas originan una deformación plástica por la que el muelle pierde altura. La altura de cono libre remanente (h₀) resulta de las tensiones residuales originadas en el equilibrio de fuerzas y momentos. A partir de este momento el disco no sufrirá ninguna deformación plástica adicional bajo cargas subsecuentes. Este proceso permite mayores tensiones de carga y una vida a fatiga más larga.

MATERIALES Y ACABADOS

- El acero alto carbono y el acero aleado proporcionan una excelente resistencia y una larga durabilidad en la mayoría de aplicaciones. El acabado estándar de fosfatado al zinc y lubricado proporciona protección adecuada para entornos húmedos. Hay disponibles acabados más resistentes, pero tienden a desaparecer (por desgaste) en aplicaciones dinámicas.
- Los acabados electrolíticos deberían evitarse. La fragilización por hidrógeno supone un riesgo demasiado alto en muelles sometidos a cargas altas y con durezas de más de HRC 40.
- El acero inoxidable austenítico es una muy buena elección para aplicaciones estáticas y con ciclos pequeños. Proporciona fuerzas elevadas y una excelente resistencia anticorrosión. Este material continuará endureciendose con su uso, luego el ciclo de vida será limitado, pero la resistencia contra fluencia es buena.
- Para aplicaciones dinámicas donde se requiere resistencia anticorrosión, se recomienda aceros inoxidables endurecidos por precipitación. Las características mecánicas de estos aceros están próximas a las de los materiales de la norma DIN EN 16983 (anteriormente DIN 2093) y son muy resistentes a la corrosión.
- A temperaturas superiores a 100°C (200°F), los materiales estandar de la norma DIN pueden empezar a perder propiedades, incluso a deformarse plásticamente. Entre 150°C y 200°C (300°F hasta 400°F) los materiales pierden su resistencia y no són útiles. El acero inoxidable es algo más resistente a las temperaturas altas, pero solo hasta 300°C (575°F).

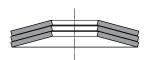
ORIENTACIÓN

- Los apilados más cortos son más eficientes. Esto es especialmente importante con cargas dinámicas. La deflección de los muelles del extremo móvil del apilado es mayor que la teórica mientras que la de los del extremo opuesto es menor. Esto se debe a la fricción entre los discos y con el cilindro o camisa de guiado. La utilización del mayor diámetro exterior posible reducirá el número de muelles necesarios y la altura total de apilado. Se recomienda que la altura total de apilado no exceda el valor de 3 veces el diámetro exterior del muelle (D_e).
- Cuando se disponen muelles en paralelo se debe tener en cuenta los siguientes factores:
 - 1. En condiciones dinámicas, la generación de calor.
 - 2. La relación entre fuerzas de carga y de descarga debida a la fricción.
 - 3. Histéresis, la mayor amortiguación resultante de la fricción entre muelles.
 - 4. Lubricación totalmente necesaria en aplicaciones con muelles en paralelo.
- Se requiere lubricación para un uso eficiente y una mayor duración de vida de los muelles. En aplicaciones moderadas es generalmente suficiente la utilización de un lubricante sólido como el disulfuro de molibdeno. En aplicaciones severas y bajo ambientes corrosivos se necesitará aceite o grasa lubricante confinada en la cámara.
- Para reducir el daño superficial cuando los muelles se utilizan en conjunción con materiales blandos se pueden utilizar arandelas de presion templadas.

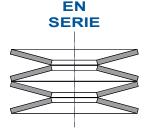


MUELLES DE PLATILLO – EL APILADO

APILADO


El apilado de muelles individuales permite al ingeniero de diseño:

- Una amplia gama de combinaciones fuerza/deflección
- La posibilidad de diseñar curvas de carga específicas a la aplicación – tanto progresivas como regresivas
- La oportunidad de diseñar un rango de características de amortiguación.


METODOS DE APILADO

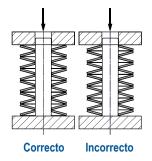
EN PARALELO

Deflección: la de un único muelle

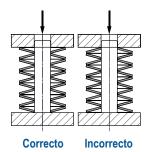
Fuerza: la de un único muelle multiplicada por el número de muelles

Deflección: la de un único muelle multiplicada por el número de muelles

Fuerza: la de un único muelle


Deflección: la de un único muelle multiplicada por el número de muelles en serie

Fuerza: la de un único muelle multiplicada por el número de muelles en paralelo agrupados


Se tiene que tener en cuenta la fricción entre las superficies de los discos en paralelo. Un factor de 2-3% por cada superficie de contacto suele ser razonable – el cual se traduce en mayor fuerza de carga y menor fuerza de descarga. Los muelles en paralelo deben estar correctamente lubricados y sugerimos que el máximo número de muelles agrupados en paralelo se limite a 4 por grupo, de cara a reducir la desviación respecto a los valores teóricos. Los muelles en paralelo también presentan mayores propiedades de amortiguación (histéresis).

CONSTRUCCION DEL APILADO

NUMERO DE MUELLES PAR

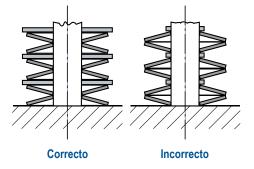
NUMERO DE MUELLES IMPAR

La situación ideal corresponde al asiento de ambos extremos sobre el borde exterior mayor. Con un número de muelles impar esto no es posible. En este caso, el extremo que asienta en el borde exterior debe corresponder con el extremo en el que se va a aplicar la fuerza – el extremo móvil del apilado.

MUELLES DE PLATILLO – EL APILADO

PRE-APILADO

SPIROL ofrece los Muelles de Disco pre-apilados (engrasados y no engrasados) con configuraciones personalizadas en paquetes de envoltura retráctil con una pestaña perforada para facilitar su inserción en el ensamblaje. Esto ahorra tiempo y ayuda a detectar errores en el proceso de montaje.

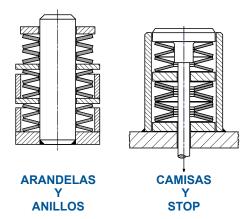

GUIADO DEL APILADO

El apilado debe guiarse de alguna forma para mantener la posición de los muelles. El método preferido es un guiado interno, por ejemplo un cilindro a través del diámetro interno. En caso de guiado por el exterior se recomienda la utilización de una camisa. En ambos casos el componente de guiado debería

haber sido sometido a un endurecimiento superficial de profundidad mínima 0,6 mm y dureza 58 HRC. Se recomienda una rugosidad superficial igual o menor a 4μ m.

Dado que el diámetro de los muelles varía al ser comprimidos, se recomienda los siguientes factores de juego libre:

	I	_	o mm)			JUEGO (mm)
			d	≤	16	0,2
•	16	<	d	≤	20	0,3
2	20	<	d	≤	26	0,4
2	26	<	d	≤	31,5	0,5
3	1,5	<	d	≤	50	0,6
Ę	50	<	d	≤	80	0,8
8	30	<	d	≤	140	1,0
1	40	<	d	≤	250	1,6


La estabilidad de muelles de espesor menor o igual a 1 mm puede originar problemas en la superficie de contacto. En estos casos se recomienda utilizar discos planos en contacto con los bordes externos de los muelles.

CURVAS DE CARGA PROGRESIVA

Mediante la combinación de apilados se pueden conseguir deflecciones consecutivas a distintos niveles de carga. Habitualmente, o bien se apilan grupos de discos paralelos (simples, dobles o triples) en serie, o bien se apilan en serie muelles de varios espesores. En estos casos es necesario

utilizar algún medio de limitación de la compresión de los discos más débiles para evitar un fallo de los mismos mientras que los discos más resistentes siguen su compresión.

APILADOS DE DISCOS PARA CURVAS DE CARGA PROGRESIVA Y LIMITADORES DE CARRERA PARA EVITAR SOBRECARGAS.

TOLERANCIAS DIMENSIONALES

TOLERANCIA DE DIAMETRO

RANGO D _e o D _i	TOLERANCIA D _e MENOS mm		TOLERANCIA CONCENTRICIDAD 1
$3 \leq d \leq 6$	0,12	0,12	0,15
6 < d ≤ 10	0,15	0,15	0,18
10 < d ≤ 18	0,18	0,18	0,22
18 < d ≤ 30	0,21	0,21	0,26
30 < d ≤ 50	0,25	0,25	0,32
50 < d ≤ 80	0,30	0,30	0,60
80 < d ≤ 120	0,35	0,35	0,70
120 < d ≤ 180	0,40	0,40	0,80
180 < d ≤ 250	0,46	0,46	0,92

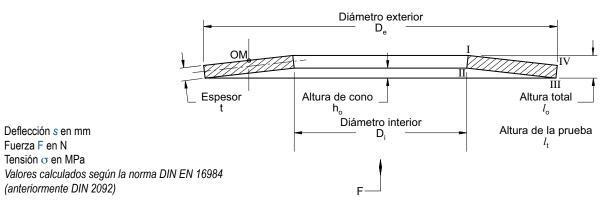
¹⁾ En referencia al diámetro exterior De

TOLERANCIA DE ESPESOR (t)

RANGO DE ESPESOR	TOLERA	NCIA mm
mm	MÁS	MENOS
$0.2 \leq t \leq 0.6$	0,02	0,06
0,6 < t ≤ 1,25	0,03	0,09
$1,25 < \mathbf{t} \leq 3,8$	0,04	0,12
$3.8 < t \leq 6$	0,05	0,15

TOLERANCIA DE ALTURA LIBRE TOTAL (l_o) *

RANGO DE ESPESOR (t)	TOLERA	NCIA mm
mm	MÁS	MENOS
t ≤ 1,25	0,10	0,05
$1,25 \le t \le 2$	0,15	0,08
2 < t ≤ 3	0,20	0,10
3 < t ≤ 6	0,30	0,15


^{*} Según la DIN EN 16893 (antigua DIN 2093), se permite exceder la tolerancia estándar para cumplir con los requerimientos de carga del muelle.

TOLERANCIA DE FUERZA DE RESORTE

En aplicaciones normales aplican las desviaciones siguientes:

La fuerza estática de un muelle individual (F) se determinará para un muelle bajo carga y con un lubricante adecuado. Las placas de presión entre las que el muelle se comprime deben haber sido endurecidas y pulidas.

ESPESOR (t) mm	DESVIACION PERMISIBLE de la carga F en s = 0,75 h _o como porcentaje
t < 1,25	+ 25 % - 7,5 %
1,25 ≤ t ≤ 3	+ 15 % - 7,5 %
3 < t ≤ 6	+ 10 % - 5 %

MA	TERIALES ESTA	NDARES										
В	"t" < 1,25 mm Acero alto carbono	HV 425 - 510 HRC 43 - 50										
w	"t" ≥ 1,25 mm Acero aleado	HV 412 - 544 HRC 42 - 52										
	ACABADO ESTA	NDAR										
R Fosfatado, aceitado												

PARA PASAR PEDIDOS: Producto / $D_e \times D_i \times t$ / código de material / código de acabado EJEMPLO: DSC 25 x 12,2 x 0,7 BR

Para muelles de platillo SPIROL en acero inoxidable vea página 14.

							1		Fu	erza	de	diser	io, d	efle	cció	n y t	ensi	ones	bas	sada	s en	E =	206	kMF	a y <i>j</i>	<i>u</i> = 0	,3		
Serie DIN		Dii	men	sion	es				ecarg 0,15				s=	0,25	h _o			s=	0,5	h _o			s=	0,75	i h _o		s	s = h _o	,
	D _e	D_{i}	t	l_{\circ}	h。	h _o /t	s	l_{t}	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\hspace{1em}I\hspace{1em}I\hspace{1em}I}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	l _t	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	F	$\sigma_{_{ m OM}}$
	8,0	3,2	0,20	0,40	0,20	1,00	0,03	0,37	8	37	144	0,05	0,35	12	97	276	0,10	0,30	20	211	433	0,15	0,25	26	409	600	0,20	30	-710
	8,0	3,2	0,30	0,55	0,25	0,83	0,04	0,51	29	113	247	0,06	0,49	46	207	401	0,13	0,43	79	511	750	0,19	0,36	104	912	1.046	0,25	126	-1.332
	8,0	3,2	0,40	0,60	0,20	0,50	0,03	0,57	43	212	214	0,05	0,55	69	365	350	0,10	0,50	130	792	666	0,15	0,45	186	1.281	949	0,20	238	-1.421
	8,0	3,2	0,50	0,70	0,20	0,40	0,03	0,67	79	299	249	0,05	0,65	128	511	408	0,10	0,60	246	1.083	782	0,15	0,55	357	1.717	1.123	0,20	465	-1.776
С	8,0	4,2	0,20	0,45	0,25	1,25	0,04	0,41	14	-7	253	0,06	0,39	21	8	409	0,13	0,33	33	114	753	0,19	0,26	39	319	1.034	0,25	42	-1.003
В	8,0	4,2	0,30	0,55	0,25	0,83	0,04	0,51	33	99	308	0,06	0,49	52	184	501	0,13	0,43	89	467	938	0,19	0,36	118	847	1.312	0,25	142	
Α	8,0	4,2	0,40	0,60	0,20	0,50	0,03	0,57	48	198	268	0,05	0,55	78	343	439	0,10	0,50	147	749	837	0,15	0,45	210	1.218	1.194	0,20		
	10,0	3,2	0,30	0,65	0,35	1,17	0,05	0,60	34	39	234	0,09	0,56	51	90	378	0,18	0,48	82	308	697	0,26	0,39	98	652	957	0,35		
	10,0	3,2	0,50	0,85	0,35	0,70	0,05	0,80	104	253	302	0,09	0,76	165	447	492	0,18	0,68	296	1.021	925	0,26	0,59	404	1.721	1.299	0,35		
	10,0	4,2	0,40	0,70	0,30	0,75	0,05	0,66	50	134	249	0,08	0,63	79	241	405	0,15	0,55	140		760	0,23	0,48	189	988	1.066	0,30		-1.384
	10,0	4,2	0,50	0,75	0,25	0,50	0,04	0,71	68	208	221	0,06	0,69	110	359	361	0,13	0,63	206	778	688	0,19	0,56	294	1.260	981	0,25		-1.441
	10,0	4,2	0,60	0,85	0,25	0,42	0,04	0,81	111	277	250	0,06	0,79	182	473	410	0,13	0,73	347	1.008	785	0,19	0,66	502	1.604	1.125	0,25	652	-1.730
C	10,0	5,2	0,25	0,55	0,30	1,20	0,05	0,51	20	2	235	0,08	0,48	30	21	380	0,15	0,40	48	133	702	0,23	0,32	58	336	965	0,30	63	-957
В	10,0	5,2	0,40	0,70	0,30	0,75	0,05	0,66	56 75	124	298 266	0,08	0,63	88	224	485	0,15	0,55	155	539	912	0,23	0,47	209	943	1.281	0,30	257	-1.531
A	10,0 12,0	5,2 4,2	0,50 0,40	0,75	0,25	0,50 1,00	0,04	0,71	55	198 76	238	0,06	0,69	122 85	343 149	435 385	0,13	0,63	228 141	749 411	829 714	0,19	0,56	325 178	1.218 786	1.182 988	0,25		-1.595 -1.228
	12.0			0,00	0,40	0.80	0,06	0,74	91	158	266	0,10	0.80	143	285	432		0,60	249	683	809	0,30	0,50	331	1.193	1.130	0,40	402	-1.535
	12,0	4,2 5,2	0,50	0,90	0,40	1,00	0,06	0,64	58	62	270	0,10	0,00	90	124	432	0,20	0,70	149	358	813	0,30	0,60	188	700	1.130	0,40		-1.295
	12,0	5,2	0,40	0,80	0,40	0,80	0,06	0,74	96	137	303	0,10	0,70	150	251	493	0,20	0,00	263	611	923	0,30	0,60	350	1.080	1.291	0,40		-1.619
	12,0	5,2	0,60	0,95	0,40	0,58	0,05	0,90	122	213	279	0,09	0,86	196	372	455	0,20	0,70	361	828	863	0,30	0,69	506	1.367	1.222	0,40	641	-1.700
	12.0	5,2	0,80	1,10	0,30	0,38	0,05	1,06	217	319	275	0,08	1,03	356	545	452	0,15	0,76	685	1.151	869	0,20	0,09	998	1.818	1.251	0,30	1.302	-1.943
	12,0	6,2	0,50	0.85	0,35	0,70	0,05	0.80	84	139	291	0,00	0.76	134	249	475	0,13	0,68	239	582	894	0,25	0,59	326	1.001	1.259	0.35	404	-1.544
	12,0	6,2	0,60	0,95	0,35	0,58	0,05	0,90	133	204	325	0.09	0,86	214	358	531	0,18	0,78	394	801	1,007	0,26	0,69	552	1.329	1.429	0,35	699	-1.853
	12,0	6,2	0,80	1,10	0,30	0,38	0,05	1,06	236	311	322	0,08	1,03	388	531	529	0,15	0,95	747	1124	1.017	0,23	0,88	1.090	1.780	1.465	0,30	1.419	-2.118

			i.					Fuerza de diseño, deflección y tensiones basadas en E = 206 kMPa y μ = 0,3																					
Serie DIN		Dir	nens	sion	es				ecarg 0,15				s=	0,25	h _o			s=	= 0,5	h _。			s=	0,75	i h _o		S	s = h	0
	D _e	D _i	t	l_{\circ}	h。	h _o /t	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	F	$\sigma_{_{ m OM}}$
С	12,5	6,2	0,35	0,80	0,45	1,29	0,07	0,73	55	-14	314	0,11	0,69	84	2	506	0,23	0,58	130	134	932	0,34	0,46	151	393	1.278	0,45	160	-1.250
В	12,5	6,2	0,50	0,85	0,35	0,70	0,05	0,80	76	129	258	0,09	0,76	120	231	420	0,18	0,68	215	539	791	0,26	0,59	294		1.114	0,35	363	-1.388
Α	12,5	6,2	0,70	1,00	0,30	0,43	0,05	0,96	147	235	259	0,08	0,93	239	403	425	0,15	0,85	457	864	814	0,23	0,77	660		1.167	0,30	855	-1.666
	14,0	6,2	0,90	1,25	0,35	0,39	0,05	1,20	269	301	273	0,09	1,16	440	514	448	0,18	1,08	846	1.090	860	0,26	0,99	1.230		1.236	0,35	1.602	-1.889
С	14,0	7,2	0,35	0,80	0,45	1,29	0,07	0,73	45	-13	259	0,11	0,69	68	0	418	0,23	0,58	106	103	770	0,34	0,46	123		1.055	0,45	131	-1.018
В	14,0	7,2	0,50	0,90	0,40	0,80	0,06	0,84	76	94	258	0,10	0,80	120	173	419	0,20	0,70	210	428	787	0,30	0,60	279		1.101	0,40	338	-1.293
Α	14,0	7,2	0,80	1,10	0,30	0,38	0,05	1,06	173	228	235	0,08	1,03	284	390	386	0,15	0,95	547	826	743	0,23	0,87	797		1.071	0,30	1.040	
	15,0	5,2	0,40	0,95	0,55	1,38	0,08	0,87	67	-15	249	0,14	0,81	101	3	401	0,28	0,68	154	142	735	0,41	0,54	176		1.002	0,55	181	-1.079
	15,0	5,2	0,70	1,25	0,55	0,79	0,08	1,17	216	201	324	0,14	1,11	340	362	526	0,28	0,98	596	861	985	0,41	0,84	797		1.376	0,55	969	
	15,0	6,2	0,50	1,00	0,50	1,00	0,08	0,93	89	64	262	0,13	0,88	138	129	424	0,25	0,75	229	368	787	0,38	0,63	289		1.089	0,50	334	-1.275
	15,0	6,2	0,60	1,05	0,45	0,75	0,07	0,98	112	135	246	0,11	0,94	178	243	400	0,23	0,83	314	574	752	0,34	0,71	424		1.054	0,45	519	
	15,0	6,2	0,70	1,10	0,40	0,57	0,06	1,04	138	189	228	0,10	1,00	222	328	373	0,20	0,90	411	727	707	0,30	0,80	578		1.002	0,40	733	-1.428
	15,0	8,2	0,70	1,10	0,40	0,57	0,06	1,04	159	178	293	0,10	1,00	256	311	479	0,20	0,90	474	694	909	0,30	0,80	666		1.291	0,40	844	-1.646
	15,0	8,2	0,80	1,20	0,40	0,50	0,06	1,14	226	226	320	0,10	1,10	367	391	523	0,20	1,00	689	856	997	0,30	0,90	982		1.423	0,40	1.261	-1.881
С	16,0	8,2	0,40	0,90	0,50	1,25	0,08	0,83	55	-6	247	0,13	0,78	84	10	399	0,25	0,65	131	117	735	0,38	0,52	154		1.009	0,50	165	-988
В	16,0	8,2	0,60	1,05	0,45	0,75	0,07	0,98	109	109	258	0,11	0,94	172	197	420	0,23	0,83	304	474	790	0,34	0,71	410		1.109	0,45	503	-1.333
Α	16,0	8,2	0,90	1,25	0,35	0,39	0,05	1,20	221	226	238	0,09	1,16	363	386	391	0,18	1,08	697	820	751	0,26	0,99	1.013		1.080	0,35	1.319	
	18,0	6,2	0,40	1,00	0,60	1,50	0,09	0,91	57	-32	198	0,15	0,85	85	-30	319	0,30	0,70	126	52	583	0,45	0,55	139		791	0,60	137	-816
	18,0	6,2	0,50	1,10	0,60	1,20	0,09	1,01	85	23	217	0,15	0,95	130	61	350	0,30	0,80	206	234	646	0,45	0,65	245		885	0,60	267	-1.021
	18,0	6,2	0,60	1,20	0,60	1,00	0,09	1,11	124	78	236	0,15	1,05	191	152	382	0,30	0,90	317	416	708	0,45	0,75			980	0,60	462	-1.225
	18,0	6,2	0,70	1,40	0,70	1,00	0,11	1,30	229	105	321	0,18	1,23	354	207	520	0,35	1,05	588	567	964	0,53	0,88	742		1.333	0,70	855	
	18,0	6,2	0,80	1,50	0,70	0,88	0,11	1,40	307	169	343	0,18	1,33	480	313	556	0,35	1,15	822	779	1,037	0,53	0,98			1.443	0,70	1.277	-1.905
	18,0	8,2	0,70	1,25	0,55	0,79	0,08	1,17	161	118	267	0,14	1,11	255	216	434	0,28	0,98	446	523	815	0,41	0,84	596		1.141	0,55	725	
	18,0	8,2	0,80	1,30	0,50	0,63	0,08	1,23	193	166	252	0,13	1,18	309	292	411	0,25	1,05	564	660	777	0,38	0,93			1.098	0,50	984	
	18,0	8,2	1,00	1,50	0,50	0,50	0,08	1,43	345	250	290	0,13	1,38	559	432	475	0,25	1,25	1.051	939	904	0,38	1,13	1.497		1.289	0,50	1.921	-1.834
C	18,0	9,2	0,45	1,05	0,60	1,33	0,09	0,96	80	-22	272	0,15	0,90	121	-14	440	0,30	0,75	186	83	809	0,45	0,60	214		1.106	0,60	223	-1.052
В	18,0	9,2	0,70	1,20	0,50	0,71	0,08	1,13	147	120	258	0,13	1,08	233	216	421	0,25	0,95	417	509	792	0,38	0,82	566		1.114	0,50	699	-1.363
Α	18,0	9,2	1,00	1,40	0,40	0,40	0,06	1,34	276	223	240	0,10	1,30	451	382	394	0,20	1,20	865	814	757	0,30	1,10	1.254		1.088	0,40	1.631	-1.558
	20,0	8,2	0,60	1,30	0,70	1,17	0,11	1,20	141	23	267	0,18	1,13	214	63	432	0,35	0,95	342	246	797	0,53	0,78	412		1.095	0,70	453	
	20,0	8,2	0,70	1,35	0,65	0,93	0,10	1,25	168	84	257	0,16	1,19	262	161	416	0,33	1,03	442	426	775	0,49	0,86	569		1.076	0,65	668	
	20,0	8,2	0,80	1,40	0,60	0,75	0,09	1,31	199	136	245	0,15	1,25	315	244	398	0,30	1,10	557	576	748	0,45	0,95	751		1.048	0,60	921	-1.373
\vdash	20,0	8,2	0,90	1,50	0,60	0,67	0,09	1,41	265	177	262	0,15	1,35	423	313	427	0,30	1,20	765	715	804	0,45	1,05			1.133	0,60		-1.545
C	20,0	10,2	0,50	1,15	0,65	1,30	0,10	1,05	94	-15	261	0,16	0,99	141	-4	422	0,33	0,83	219	98	776	0,49	0,66	254		1.063	0,65	268	_
В	20,0	10,2	0,80	1,35	0,55	0,69	0,08	1,27	191	129	258	0,14	1,21	304	230	421	0,28	1,08	547	536	793	0,41	0,94	748		1.118	0,55	929	-1.386
\vdash	20,0	10,2	0,90	1,45	0,55	0,61	0,08	1,37	257	166	277	0,14	1,31	412	292	452	0,28	1,18	754	659	856	0,41	1,04	1.050		1.212	0,55	1.323	-1.560
\vdash	20,0	10,2	1,00	1,55	0,55	0,55	0,08	1,47	337	203	296	0,14	1,41	544	354	484	0,28	1,28	1.010	783	920	0,41	1,14	1.425		1.307	0,55	1.815	
A	20,0	10,2	1,10	1,55	0,45	0,41	0,07	1,48	335	222	242	0,11	1,44	548	379	397	0,23	1,33	1.050	809	761	0,34	1,21	1.521	1.290	1.093	0,45	1.976	-1.560
Α	20,0	10,2	1,25	1,75	0,50	0,40	0,08	1,68	544	283	303	0,13	1,63	890	484	498	0,25	1,50	1.708	1.030	955	0,38	1,38	2.477	1.639	1.373	0,50	3.222	-1.969

									Fu	erza	de	diser	io, c	defle	cció	n y t	ensi	one	s ba	sada	ıs en	E =	206	kMF	Рау	μ = 0	,3		
Serie DIN		Dir	men	sion	es				ecarg 0,15				s=	0,25	i h _o			s=	= 0,5	h _o			s=	0,75	i h _o			s = h	0
	D _e	D_{i}	t	l_{\circ}	h _o	h _o /t	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	l_{t}	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	$l_{\rm t}$	F	$\sigma_{_{ m II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	F	$\sigma_{_{ m OM}}$
С	22,5	11,2	0,60	1,40	0,80	1,33	0,12	1,28	160	-23	302	0,20	1,20	240	-14	488	0,40	1,00	370	98	897	0,60	0,80	426	336	1.227	0,80	444	-1.178
В	22,5	11,2	0,80	1,45	0,65	0,81	0,10	1,35	195	93	253	0,16	1,29	306	171	412	0,33	1,13	533	425	771	0,49	0,96	707	762	1.079	0,65	855	
Α	22,5	11,2	1,25	1,75	0,50	0,40	0,08	1,68	424	224	234	0,13	1,63	693	383	384	0,25	1,50	1.330		737	0,38	1,37	1.929	1.296	1.059	0,50		-1.534
	23,0	8,2	0,70	1,50	0,80	1,14	0,12	1,38	183	37	245	0,20	1,30	279	87	397	0,40	1,10	448		733	0,60	0,90	544	626	1.007	0,80	602	
	23,0	8,2	0,80	1,55	0,75	0,94	0,11	1,44	214	92	237	0,19	1,36	332	175	384	0,38	1,18	560		714	0,56	0,99	719	846	991	0,75	842	
	23,0	8,2	0,90	1,70	0,80	0,89	0,12	1,58	311	125	277	0,20	1,50	486	233	449	0,40	1,30	829		837	0,60	1,10		1.066	1.164	0,80	1.279	
	23,0	8,2	1,00	1,70	0,70	0,70	0,11	1,60	319	178	241	0,18	1,53	507	315	393	0,35	1,35			738	0,53	1,18		1.225	1.037	0,70	1.536	
	23,0	10,2	0,90	1,65	0,75	0,83	0,11	1,54	295	115	289	0,19	1,46	463	213	469	0,38	1,28			877	0,56	1,09	1.058	953	1.225	0,75	1.273	
	23,0	10,2	1,00	1,70	0,70	0,70	0,11	1,60	339	158	277	0,18	1,53	538	282	451	0,35	1,35			849	0,53	1,18		1.119		0,70	1.629	
	23,0	12,2	1,25	1,85	0,60	0,48	0,09	1,76	532	231	304	0,15	1,70	863	399	497	0,30	1,55			949	0,45	1,40		1.404	1.356	0,60		
	23,0	12,2	1,50	2,10	0,60	0,40	0,09	2,01	875	308	344	0,15	1,95	1,432	527	565	0,30	1,80			1.085	0,45	1,65		1.788	1.560	0,60		
С	25,0	12,2	0,70	1,60	0,90	1,29	0,14	1,47	219	-13	309	0,23	1,38	331	4	499	0,45	1,15	515		919	0,68	0,92	600	396	1.259	0,90	635	
В	25,0	12,2	0,90	1,60	0,70	0,78	0,11	1,50	233	99	239	0,18	1,43	367	181	389	0,35	1,25	644		730	0,53	1,07	862	776	1.023	0,70	1.050	
	25,0	12,2	1,00	1,80	0,80	0,80	0,12	1,68	371	120	308	0,20	1,60	585	220	500	0,40	1,40			938	0,60	1,20	1.359	965	1.313	0,80	1.647	-
	25,0	12,2	1,25	1,95	0,70	0,56	0,11	1,85	526	205	291	0,18	1,78	848	357	475	0,35	1,60			902	0,53	1,43	2.214	1.305	1.281	0,70	2.814	
Α	25,0	12,2	1,50	2,05	0,55	0,37	0,08	1,97	634	249	239	0,14	1,91	1,040	425	393	0,28	1,78			757	0,41	1,64	2.926	1.419	1.091	0,55		
	28,0	10,2	0,80	1,75	0,95	1,19	0,14	1,61	229	23 84	232	0,24	1,51	348	62	375	0,48	1,28	553		692	0,71	1,04	662	532	950	0,95	723	
	28,0	10,2	1,00 1,25	2,00	1,00 1,00	1,00 0,80	0,15	1,85	398 654	176	278 312	0,25 0,25	1,75 2,00	615	165 319	451 507	0,50	1,50 1,75			837 949	0,75	1,25 1,50		880 1.340	1.158 1.326	1,00 1,00	1.486 2.902	
	28,0 28.0	10,2	1,25	2,25	0,70	0,80	0,15 0,11	2,10	617	247	211	0,25	2,00	1,030	424	346	0,50	1,75			660	0,75	1,68		1.461	943	0,70		
-	28,0	12,2	1,00	1,95	0,70	0,47	0,11	2,10 1,81	380	80	288	0,16	1,71	1,003 590	156	467	0,35 0,48	1,48	1.899 992		870	0,53	1,00	1.268	807	1.208	0,70	1.482	
-	28,0	12,2	1,00	2,10	0,95	0,95	0,14	1,97	530	169	277	0,24	1,71	844	300	451	0,46	1,46			849	0,71	1,46		1.172	1.196	0,95		
-	28,0	12,2	1,50		0,65		0,13	2,14	709	235	261	0,21	2,06	1,149	406	426	0,43	1,88				0,56	1,69		1.431	1.157	0,65		
С	28,0	14,2	0,80		1,00		0,11	1,65	287	-7	319	0,13	1,55	435	13	515	0,50	1,30			950	0,75	1,05	801	422	1.304	1,00	859	_
В	28,0	14,2	1,00	1,80	0,80		0,13	1,68	303	94	254	0,20	1.60	476	174	414	0,40	1,40			776	0.60	1,20	1.107	765	1.086	0.80	1.342	
	28,0	14,2	1,25	2,10	0,85	0,68	0,12	1,97	570	161	315	0,21	1,89	907	287	513	0,43	1,68	1.634		968	0.64	1,46	2.240	1.138	1.365	0,85	2.785	
Α	28.0	14,2	1,50	2,15	0,65	0,43	0,10	2,05	633	216	246	0,16	1,99	1,033	371	403	0.33	1,83	1.970	-	772	0,49	1,66	2.841	1.274	1.106	0,65	3.680	
	31,5	12,2	1,00	2,10	1,10	1,10	0,17	1,94	383	44	264	0,28	1,83	587	98	426	0,55	1.55			788	0,83	1,28	1.167	656	1.086	1,10		
С	31,5	16,3	0,80	1.85	1,05	1,31	0,16	1,69	255	-19	278	0,26	1,59	384	-9	448	0,53	1,33	594		825	0,79	1,06	687	308	1.130	1,05	722	
В	31,5	16,3	1,25	2,15	0,90	0,72	0,14	2,02	498	124	275	0,23	1,93	791	224	449	0,45	1,70			844	0,68	1,47		917	1.187	0,90	2.359	
	31.5	16,3	1,50	2,40	0,90	0,60	0,14	2,27	785	186	307	0,23	2,18	1,260	326	501	0,45	1,95			950	0.68	1,73		1.223	1.346	0,90		
Α	31.5	16,3	1,75	2,45	0,70	0,40	0,11	2,35	850	223	243	0,18	2.28	1,391	382	399	0,35	2,10			766	0.53	1,92		1.296	1.102	0,70		
	31,5	16,3	2,00		0,75	0,38	0,11	2,64	1,342	282	292	0,19	2,56	2,199	481	480	0,38				924	0,56	2,19		1.615		0,75		
	34,0	12,3	1,00	2,20	1,20	1,20	0,18	2,02	386	22	249	0,30	1,90	587	63	403	0,60	1,60			742	0,90	1,30		563	1.018	1,20		
	34,0	12,3	1,25	2,45	1,20	0,96	0,18	2,27	610	98	276	0,30	2,15	946	188	448	0,60	1,85		500	833	0,90	1,55		938	1.154	1,20		
	34,0	12,3	1,50	2,70	1,20	0,80	0,18	2,52	919	173	304	0,30	2,40		313	493	0,60	2,10		750	923	0,90	1,80		1.313		1,20		
	34,0	14,3	1,25	2,40	1,15		0,17	2,23	586	93	284	0,29	2,11	913	177	461	0,58	1,83				0,86	1,54		868	1.193	1,15	2.347	
	34,0	14,3	1,50	2,55	1,05		0,16	2,39	770	167	274	0,26	2,29	1,224	297	447	0,53	2,03	2.192	687	841	0,79	1,76	2.990	1.172	1.183	1,05	3.704	-1.572
	34,0	16,3	1,50	2,55	1,05	0,70	0,16	2,39	812	158	304	0,26	2,29	1,291	283	495	0,53	2,03	2.313	660	933	0,79	1,76	3.155	1.131	1.313	1,05	3.908	-1.658
	34,0	16,3	2,00	2,85	0,85	0,43	0,13	2,72	1,284	260	274	0,21	2,64	2,097	445	449	0,43	2,43	4.003	952	860	0,64	2,21	5.783	1.520	1.234	0,85	7.498	-1.790

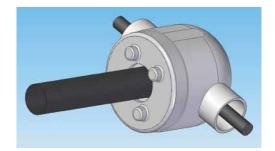
									Fu	erza	de	diser	io, c	lefle	cció	n y t	ensi	ones	s bas	sada	s en	E =	206	kMF	Рау	u = 0	,3		
Serie DIN		Diı	men	sion	es				ecarg 0,15				s=	0,25	h _o			s=	= 0,5	h _o			0,75	S	s = h)			
	D _e	D _i	t	$l_{\rm o}$	h _。	h _o /t	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	S	$l_{\rm t}$	F	$\sigma_{_{ m II}}$	$\sigma_{_{\rm III}}$	s	П	$\sigma_{_{ m 0M}}$
С	35,5	18,3	0,90	2,05	1,15		0,17	1,88	303	-12	264	0,29	1,76	458	2	427	0,58	1,48	712	108	786	0,86	1,19	832	320	1.078	1,15	884	-1.042
В	35,5	18,3	1,25	2,25	1,00		0,15	2,10	464	91	251	0,25	2,00	731	168	409	0,50	1,75	1.277	416	766	0,75	1,50		743	1.073	1,00	2.059	-1.258
Α	35,5	18,3	2,00	2,80	0,80	- , -	0,12	2,68	1,139	230	249	0,20	2,60	1,864	393	409	0,40	2,40	3.576	837	785	0,60	2,20			1.128	0,80	6.747	-1.611
	40,0	14,3	1,25	2,65	1,40		0,21	2,44	591	44	251	0,35	2,30	904	98	406	0,70	1,95	1.459	319	750	1,05	1,60		664	1.033	1,40	1.984	-1.213
-	40,0	14,3 14,3	1,50 2,00	2,80 3,05	1,30 1,05		0,20 0,16	2,61 2,89	760 1,112	118 227	245 214	0,33	2,48 2,79	1,188 1,800	218 393	398 349	0,65 0,53	2,15 2,53	2.040 3.363	542 855	743 664	0,98 0,79	1,83 2,26		973 1.387	1.034 943	1,30 1,05	3.184 6.096	-1.351
	40,0 40,0	16,3	1,50	2,80	1,30		0,16	2,69	783	107	265	0,26	2,79	1.224	199	430	0,55		2.102	503	802	0,79				1.118		3.281	-1.455 -1.392
	40.0	16.3	2,00	3,10	1,10			2,94		216		0,33	2.83	1.972	375	402	0,55			825	764	0,90		5.169			1.10	6.580	
	40,0	18,3	2,00	3,15	1,15			2,98		209		0,29	2,86		365	466	0,58			810	883	0,86	2,29				1,15	7.171	-1.712
С	40,0	20,4	1,00	2,30	1,30		0,20	2,11	375	-15		0,33	1,98	565	-4	422	0,65	1,65	876	98	776	0,98	1,32				1,30	1.072	
В	40,0	20,4	1,50	2,65	1,15		0,17	2,48	702	108	265	0,29	2,36		196	431	0,58	2,08	1.953	474	810	0,86	1,79		835		1,15	3.201	-1.359
	40,0	20,4	2,00	3,10	1,10	0,55	0,17	2,94	1.348	203	296	0,28	2,83	2.175	354	484	0,55	2,55	4.041	783	920	0,83	2,28	5.701	1.288	1.307	1,10	7.258	-1.733
Α	40,0	20,4	2,25	3,15	0,90		0,14	3,02	1.428	229	246	0,23	2,93	2.336	392	403	0,45	2,70	4.481	835	774	0,68	2,47			1.112	0,90		-1.595
	40,0	20,4	2,50	3,45	0,95		0,14	3,31	2.045	275		0,24	3,21	3.351	470	466	0,48	2,98	6.453	997	896	0,71	2,74			1.290		12.243	-1.871
С	45,0	22,4	1,25	2,85	1,60		0,24	2,61	689	-13	307	0,40	2,45		4	497	0,80	2,05	1.620	134	914	1,20	1,65		389	1.253	1,60	2.007	-1.227
В	45,0	22,4	1,75	3,05	1,30		0,20	2,86		119		0,33	2,73		214	433	0,65			512	814	0,98	2,07			1.144	1,30	4.475	
Α	45,0	22,4	2,50	3,50	1,00		0,15	3,35		224	234 287	0,25	3,25		383	384	0,50	3,00		815 759	737 893	0,75	2,75					10.037	-1.534
	45.0 50,0	24,4 18,4	2,25 1,50	3,40 3,15	1,15 1,65		0,17 0,25	3,23 2,90	1,610 761	200 42		0,29	3,11 2,74	2.607 1.166	346 93	469 370	0,58 0,83	2,83 2,33	4.887 1.890	294	684	0,86 1,24	2,54 1,91			1.273 942	1,15 1,65	8.902 2.600	-1.679 -1.104
	50,0	18,4	2,00	3,65	1,65		0,25	3,40	-	137	263	0,41	3,24	2.229	251	428	0,83	2,83	3.868	610	800	1,24	2,41			1.116	1,65	6.163	
	50,0	18,4	2,50	4,15	1,65			3,90		232		0,41	3,74		409	486	0,83			926	916	1,24	2,91					12.038	
	50.0	20,4	2,00	3,50	1,50			3,28		136		0,38	3,13	1.966	244	397	0,75			578	745	1,13	2,38			1.045	1,50	5.745	
	50,0	20,4	2,50	3,85	1,35			3,65		215	240	0,34	3,51	3.008	373	393	0,68			817	746	1,01		7.919				10.098	
	50,0	22,4	2,00	3,60	1,60	0,80	0,24	3,36	1.427	125	286	0,40	3,20		228	466	0,80	2,80	3.924	556	872	1,20	2,40	5.222			1,60	6.329	-1.511
	50,0	22,4	2,50	3,90	1,40			3,69		209		0,35	3,55		364	442	0,70			806	838	1,05		8.510		1.190		10.817	-1.653
С	50,0	25,4	1,25	2,85	1,60		0,24	2,61	565	-11	254	0,40	2,45	854	2	410	0,80		1.328	106	755	1,20		1.550		1.035		1.646	
	50,0	25,4	1,50	3,10	1,60		0,24	2,86	808	32	276	0,40	2,70	1.242	74	447	0,80	2,30	2.028	250	828	1,20				1.145	1,60		-1.207
В	50,0	25,4	2,00	3,40	1,40		0,21	3,19		128 165	264 312	0,35	3,05	1.949	230 292	430	0,70			537	810	1,05		4.762		1.140		5.898	
	50,0 50.0	25,4 25,4	2,25 2,50	3,75 3,90	1,50 1,40		0,23	3,53 3,69		204	302	0,38	3,38	2.905 3.473	355	508 494	0,75 0,70		5.249 6.437	675 789	959 938	1,13 1,05	2,63 2,85			1.353 1.332	1,50	8.997 11.519	-1.697 -1.760
Α	50,0	25,4	3,00	4,10	1,10		0,21	3,94	2.134	249	249	0,33	3,83		424	494	0,70			897	787	0,83		11.976				15.640	
C	56,0	28,5	1,50	3,45	1,95		0,17	3,16	966	-17	299	0,49	2,96		-4	483	0,98	2,48		112	889	1,46	1,99		350		1,10	2.766	
В	56.0	28,5	2,00	3,60	1,60		0,24	3,36		94		0,40	3,20		173	415	0,80	2,80		428	778	1,20		4.438			1,60		
A	56,0	28,5	3,00	4,30	1,30		0,20	4,11	2.539	216		0,33	3,98	4.142	371	404	0,65			795	775	0,98		11.388		1.110		14.752	
	60,0	20,5	2,00	4,20	2,20			3,87		58		0,55	3,65		125	440	1,10			386	812	1,65		5.026				5.636	
	60,0	20,5	2,50	4,70	2,20	0,88	0,33	4,37		149	303	0,55	4,15		276	491	1,10	3,60		688	916	1,65	3,05	9.255		1.273		11.008	-1.682
	60,0	25,5	2,50	4,40	1,90			4,12		143		0,48	3,93		259	451	0,95			616	847	1,43	2,98			1.187	1,90	9.997	-1.527
	60,0	25,5	3,00	4,65	1,65		0,25	4,40		213		0,41	4,24	4.495	369	414	0,83			812	787	1,24		11.784		1.117		15.002	
	60,0	30,5	2,50	4,50	2,00		0,30	4,20	2.578	128	347	0,50	4,00	4.059	236	564	1,00	3,50	7.088	583	1.058	1,50	3,00		1.041	1.481		11.433	-1.747
	60,0	30,5	3,00	4,70	1,70		0,26	4,45		204	307	0,43	4,28		356	502	0,85	3,85	9.407	793	953	1,28	-	13.226	1.309	1.353	- '	16.792	-1.782
	60,0	30,5	3,50	5,00	1,50	0,43	0,23	4,78	4.039	255	288	0,38	4,63	6.591	437	472	0,75	4,25	12.574	937	905	1,13	3,88	18.153	1.499	1.297	1,50	23.528	-1.834

									Fu	erza	de	diser	ňo, c	defle	cció	n y t	ensi	ones	s bas	sada	s en	E=	206 kl	МР	ау,	<i>u</i> = 0	,3		
Serie DIN		Diı	men	sion	es			Precarga, s = 0,15 h _o						0,25	h _o			s=	= 0,5	h _o			s = h _o						
	D _e	D _i	t	l_{\circ}	h。	h _o /t	s	$l_{\rm t}$	F	$\sigma_{_{\mathrm{II}}}$	$\sigma_{_{ m III}}$	s	l_{t}	F	$\sigma_{_{\mathrm{II}}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	l _t F	-	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	F	$\sigma_{_{ m OM}}$
С	63,0	31,0	1,80	4,15	2,35	1,31	0,35	3,80	1.566	-19	332	0,59	3,56	2.364	-4	536	1,18	2,98	3.658	130	986	1,76	2,39 4.2	238	402	1.351	2,35	4.463	3 -1.315
В	63,0	31,0	2,50	4,25	1,75	0,70	0,26	3,99	1.850	127	252	0,44	3,81	2.942	227	410	0,88	3,38	5.270	531	773	1,31		189	912	1.088	1,75	8.904	
	63,0	31,0	3,00	4,70	1,70	0,57	0,26	4,45	2.808	186	270	0,43	4,28	4.524	324	441	0,85		8.373	721	838	1,28	3,43 11.7	772	1.190	1.189	1,70	14.946	-1.586
Α	63,0	31,0	3,50	4,90	1,40	0,40	0,21	4,69	3.301	224	231	0,35	4,55	5.399	383	380	0,70	4,20	10.359	815	729	1,05	3,85 15.0	025	1.296	1.047	1,40	19.545	-1.524
	70,0	30,5	2,50	4,90	2,40	0,96	0,36	4,54	2.421	78	293	0,60	4,30	3.755	153	475	1,20	3,70	6.297	422	883	1,80	3,10 8.0	031	806	1.225	2,40	9.360	1.430
	70,0	30,5	3,00	5,10	2,10	0,70	0,32	4,79	2.941	155	266	0,53	4,58	4.676	276	433	1,05	4,05	8.376	640	814	1,58	3,53 11,	426	1,093	1,145	2,10	14.152	2 -1.502
	70,0	35,5	3,00	5,10	2,10	0,70	0,32	4,79	3.162	147	302	0,53	4,58	5.028	264	493	1,05	4,05		617	928	1,58	3,53 12,		1,060	1,307	2,10	15.218	-1.615
	70,0	35,5	4,00	5,80	1,80	0,45	0,27	5,53	5.376	250	294	0,45	5,35	8.757	430	482	0,90			925	921	1,35	4,45 23,	923	1,486	1,319		30.919	
С	71,0	36,0	2,00	4,60	2,60	1,30	0,39	4,21	1.895	-19	330	0,65	3,95	2.861	-5	532	1,30	3,30		125	980	1,95		144	388	1,342	2,60	5.426	6 -1.295
В	71,0	36,0	2,50		2,00	0,80	0,30	4,20		92	247	0,50	4,00	2.894	169	402	1,00	3,50		417	754	1,50		725	744	1,055	2,00		
Α	71,0	36,0	4,00	5,60	1,60	0,40	0,24	5,36		230	245	0,40	5,20	7.379	393	402	0,80		14.157	837	772	1,20	4,40 20,		1,332	1,109		26.712	
С	80,0	41,0	2,25	5,20	2,95	1,31	0,44	4,76		-22	337	0,74	4,46	3.698	-9	544	1,48			117	1.000	2,21		613	379	1,370	2,95		
В	80,0	41,0	3,00	5,30	2,30	0,77	0,35	4,96		107	267	0,58	4,73	4.450	196	434	1,15	4,15		474	814	1,73	3,57 10,		835	1,142		12.844	
	80,0	41,0	4,00	6,20	2,20	0,55	0,33	5,87		203	298	0,55	5,65		354	486	1,10		16.213	783	924	1,65	4,55 22,8		1,288	1,314		29.122	
Α	80,0	41,0	5,00	6,70	1,70	0,34	0,26	6,45		258	248	0,43	6,28		439	407	0,85		22.928	924	786	1,28	5,42 33,		1,453	1,135		43.952	
С	90,0	46,0	2,50	5,70	3,20	1,28	0,48	5,22	-	-14	315	0,80	4,90	4.232	2	509	1,60		6.585	130	938	2,40		684	385	1,286	3,20		
В	90,0	46,0	3,50	6,00	2,50	0,71	0,38	5,63		120	258	0,63	5,38		216	421	1,25		10.416	509	792	1,88	4,12 14,		879	1,114		17.487	
Α	90,0	46,0	5,00	7,00	2,00	0,40	0,30	6,70		223	240	0,50		11.267	382	394	1,00		21.617	814	757	1,50	5,50 31,		1,295	1,088	,	40.786	
	100,0	41,0	4,00	7,20	3,20	0,80	0,48	6,72		131	269	0,80	6,40		238	437	1,60		15.219	577	818	2,40	4,80 20,		1,017	1,144	-	24.547	
	100,0	41,0	5,00	7,75	2,75	0,55	0,41	7,34		216	247	0,69	7,06		374	404	1,38		22.937	823	767	2,06	5,69 32,		1,346	1,089		41.20	
С	100,0	51,0	2,70	6,20	3,50	1,30	0,53	5,68		-17	303	0,88	5,33	4.779	-3	490	1,75		7.410	116	902	2,63		609	357	1,235	3,50		
В	100,0	51,0	3,50	6,30	2,80	0,80	0,42	5,88		91	246	0,70	5,60		167	399	1,40	4,90		411	749	2,10	4,20 13,		734	1,049		15.843	
	100,0	51,0	4,00	7,00	3,00	0,75	0,45	6,55		124	292	0,75	6,25		225	476	1,50		15.341	540	894	2,25	4,75 20,		944	1,255		25.338	
<u> </u>	100,0	51,0	5,00	7,80	2,80	0,56	0,42	7,38		204	303	0,70	7,10		355	496	1,40		25.810	789	942	2,10	5,70 36,		1,301	1,337		46.189	
A	100,0	51,0	6,00		2,20	0,37	0,33		10.401	249	250	0,55	7,65		424	411	1,10		32.937	897	790	1,65	6,55 48,0		1,418	1,139		62.711	
C	112,0	57,0	3,00	6,90	3,90	1,30	0,59	6,32		-17	299	0,98	5,93	5.834	-4	483	1,95		9.038	112	889	2,93	3,97 10,4		350	1,218		11.064	
В	112,0	57,0	4,00	7,20	3,20	0,80	0,48	6,72		94	255	0,80	6,40	7.639	173	415	1,60		13.341	428	778	2,40	4,80 17,		765	1,090		21.518	
A	112,0	57,0	6,00	8,50	2,50	0,42	0,38	8,13		212	234	0,63	7,88		363	384	1,25		30.215	777	737	1,88	6,62 43,		1,239	1,058		56.737	
C	125,0	64,0	3,50	8,00	4,50	1,29	0,68	7,33		-16	323	1,13	6,88		0	522	2,25		13.231	129	961	3,38	4,62 15,4		388	1,318		16.335	
В	125,0	64,0	5,00	8,50	3,50	0,70	0,53	7,98		128	266	0,88		12.238	229	433	1,75		21.924	537	816	2,63	5,87 29,	_	923	1,149	- ,	37.041	
С	140,0	72,0	3,80	8,70	4,90	1,29	0,74	7,97		-16	306	1,23	7,48	9.514	-2	495	2,45		14.773	119	911	3,68	5,02 17,		362	1,249		18.199	
В	140,0	72,0	5,00		4,00	0,80	0,60	8,40		94	258	1,00	8,00		173	419	2,00		20.982	428	787	3,00	6,00 27,		764	1,101		33.843	
С	160,0	82,0	4,30	9,90	5,60	1,30	0,84	9,06		-18	304	1,40	_	12.162	-6	491	2,80		18.832	111	904	4,20	5,70 21,		350	1,238		23.022	
В	160,0	82,0	6,00	- ,	4,50	0,75	0,68	9,83		109	258	1,13	- ,	17.203	197	420	2,25	-, -	30.431	474	790	3,38	7,12 41,		830	1,109	,	50.260	
C	180,0	92,0	4,80	11,00	6,20	1,29	0,93	10,07		-15	295	1,55		14.646	-2	476	3,10		22.731	115	877	4,65	6,35 26,		350	1,201		27.966	
В	180,0	92,0	6,00	11,10	5,10	0,85	0,77	10,34		77	244	1,28		16.558	144	396	2,55		28.552	368	742	3,83	7,27 37,		672	1,035		44.930	
С	200,0	102,0	5,50	12,50	7,00	1,27	1,05	11,45	13.104	-12	306	1,75	10,/5	19.817	5	494	3,50	9,00	30.882	131	910	5,25	7,25 36,	[111]	381	1,247	7,00	38.423	3 -1.213

MUELLES DE PLATILLO EN ACERO INOXIDABLE

MATERIALES ESTÁNDAR

D Acero inoxidable austenítico

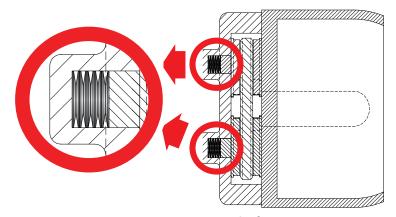

ACABADO ESTANDAR

K Bruto

PARA PASAR PEDIDOS: Producto / $D_e \times D_i \times t$ / código de material / código de acabado EJEMPLO: DSC 25 x 12,2 x 0,9 DK

							-	Fu	erza	de d	disei	ño, c	lefle	cció	n y t	tensiones basadas en E = 206 kMPa y μ = 0,3												
	Dir	nens	sion	es		Precarga, s = 0,15 h _o						s=	0,25	h _o			s=	= 0,5	h _。		$s = 0.75 h_{o}$						s = h _o	
D _e	D _i	t	$l_{\rm o}$	h _o	h _o /t	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{ m II}}$	$\sigma_{_{ m III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\mathrm{III}}}$	Ŋ	F	σ _{0M}
8,0	4,2	0,40	0,60	0,20	0,50	0,03	0,57	45	183	247	0,05	0,55	72	317	405	0,10	0,50	136	691	772	0,15	0,45	193	1,124	1,102	0,20	248	-1.480
10,0	5,2	0,40	0,70	0,30	0,75	0,05	0,66	51	114	275	0,08	0,63	81	207	448	0,15	0,55	143	497	841	0,23	0,48	193	870	1,181	0,30	237	-1.412
10,0	5,2	0,50	0,75	0,25	0,50	0,04	0,71	69	183	245	0,06	0,69	112	317	401	0,13	0,63	211	691	764	0,19	0,56	300	1,123	1,090	0,25	385	-1.471
12,5	6,2	0,50	0,85	0,35	0,70	0,05	0,80	70	119	238	0,09	0,76	111	213	387	0,18	0,68	198	497	730	0,26	0,59	271	853	1,027	0,35	335	-1.281
12,5	6,2	0,70	1,00	0,30	0,43	0,05	0,96	135	217	239	0,08	0,93	221	372	392	0,15	0,85	421	797	750	0,23	0,78	608	1,275		0,30		-1.537
14,0	7,2	0,50	0,90	0,40	0,80	0,06	0,84	70	87	238	0,10	0,80	111	160	387	0,20	0,70	194	395	725	0,30	0,60	258	705	1,016	0,40		-1.192
14,0	7,2	0,80	1,10	0,30		0,05	1,06	160	211	217	0,08	1,03	262	360	356	0,15	0,95	505	762	686	0,23	0,88	735	1,206	988	0,30		-1.431
16,0	8,2	0,40	0,90	0,50	1,25	0,08	0,83	51	-6	228	0,13	0,78	77	9	368	0,25	0,65	121	108	678	0,38	0,53	142	297	930	0,50	153	-911
16,0	8,2	0,60	1,05	0,45		0,07	0,98	100	101	238	0,11	0,94	159	182	388	0,23	0,83	281	437	728	0,34	0,71	378	765		0,45	464	-1.230
16,0	8,2	0,90	1,25	0,35		0,05	1,20	204	208	220	0,09	1,16	334	356	360	0,18	1,08	643	756	693	0,26	0,99	934	1,200	996	0,35		-1.435
18,0	9,2	0,45	1,05	0,60	,	0,09	0,96	74	-20	251	0,15	0,90	111	-13	406	0,30	0,75	171	77	746	0,45	0,60	197	269		0,60	206	-970
18,0	9,2	0,70	1,20	0,50		0,08	1,13	136	111	238	0,13	1,08	215	199	388	0,25	0,95	384	469	730	0,38	0,32	522	811	1,028	0,50	645	-1.257
18,0	9,2	1,00	1,40	0,40	0,40	0,06	1,34	254	206	222	0,10	1,30	416	353	363	0,20	1,20	798	751	698	0,30		1.157	1,195		0,40	1.505	-1.437
20,0	10,2	0,50	1,15	0,65	1,30	0,10	1,05	86	-14	241	0,16	0,99	130	-4	389	0,33	0,83	202	90	716	0,49	0,66	234	281	981	0,65	247	-944
20,0	10,2	0,80	1,35	0,55		0,08	1,27	176	119	238	0,14	1,21	281	212	388	0,28	1,08	504	494	732	0,41	0,94	690	846		0,55		-1.279
20,0	10,2	1,10	1,55	0,45	0,41	0,07	1,48	309	204	223	0,11	1,44	506	350	366	0,23	1,33	968	746	702	0,34		1.403	1,190	1,008	0,45	1.823	-1.438
22,5	11,2	0,60	1,40	0,80	1,33	0,12	1,28	147	-21	279	0,20	1,20	222	-13	450	0,40	1,00	341	91	827	0,60	0,80	392	310	1,132	0,80		-1.086
22,5	11,2	0,80	1,45	0,65		0,10	1,35	180	86	234	0,16	1,29	283	158	380	0,33	1,13	492	392	712	0,49	0,96	653	703	995	0,65		-1.177
22,5	11,2	1,25	1,75	0,50	0,40	0,08	1,68	391	206	216	0,13	1,63	639	353	354	0,25	1,50	1.227	751	679	0,38		1.779	1,195	977	0,50		-1.414
25,0	12,2	0,70	1,60	0,90	1,29	0,14	1,47	202	-12	285	0,23	1,38	305	3	460	0,45	1,15	475	125	847	0,68	0,93	553	365	,	0,90	586	-1.142
25,0	12,2	0,90	1,60	0,70		0,11	1,50	214	92	221	0,18	1,43	338	167	359	0,35	1,25	594	406	674	0,53	1,08	795	716	944	0,70		-1.142
25,0	12,2	1,50	2,05	0,55		0,08	1,97	585	230	221	0,14	1,91	959	392	363	0,28	1,78		829	698	0,41		2.699	1,309		0,55		-1.496
28,0	14,2	0,80	1,80	1,00	1,25	0,15	1,65	265	-7	294	0,25	1,55	401	12	475	0,50	1,30	628	142	876	0,75	0,77	739	389		1,00	792	-1.182
28,0	14,2	1,00	1,80	0,80		0,12	1,68	279	87	235	0,20	1,60	439	160	382	0,40	1,40	767	395	715	0,60		1.021	706		0,80	1.238	-1.182
28,0	14,2	1,50	2,15	0,65		0,10	2,05	584	199	227	0,16	1,99	953	342	372	0,33	1,83	1.817	734	712	0,49		2.620	1,175		0,65		-1.441
31,5	16,3	0,80	1,85	1,05	1,31	0,16	1,69	235	-17	256	0,26	1,59	354	-8	413	0,53	1,33	548	86	761	0,79	0,87	634	284	1,042	1,05	666	-993
31,5	16,3	1,25	2,15	0,90	0,72	0,14	2,02	459	115	254	0,23	1,93	729	206	414	0,45	1,70		488	779	0,68		1.764	846	1,095	0,90	2.176	-1.330
35,5	18,3	0,90	2,05	1,15	1,28	0,17	1,88	279	-11	244	0,29	1,76	422	2	394	0,58	1,48	657	100	725	0,86	1,19	767	295	994	1,15	815	-961
35,5	18,3	1,25	2,25	1,00	0,80	0,15	2,10	428	84	232	0,25	2,00	674	155	377	0,50	1,75		383	707	0,75		1.567	685	990	1,00	1.899	-1.161
40,0	20,4	1,00	2,30	1,30	1,30	0,20	2,11	345	-14	241	0,33	1,98	521	-4	389	0,65	1,65	808	90	716	0,98	1,33	938	281	981	1,30	989	-944
40,0	20,4	1,50	2,65	1,15		0,17	2,48	648	99	245	0,29	2,36	1.023	181	398	0,58	2,08		437	747	0,86		2.418	770	1,048	1,15	2.953	-1.253
45,0	22,4	1,25	2,85	1,60		0,24	2,61	635	-12	284	0,40	2,45	961	4	458	0,80	2,05	1.495	123	843	1,20		1.744	359	1,156	1,60	1.851	-1.132
50,0	25,4	1,25	2,85	1,60	1,28	0,24	2,61	521	-10	234	0,40	2,45	787	2	378	0,80	2,05	1.225	98	697	1,20	-	1.430	288	955	1,60	1.518	-928
56,0	28,5	1,50	3,45	1,95		0,29	3,16	891	-16	276	0,49	2,96	1.345	-4	446	0,98	2,48	2.084	104	820	1,46		2.419	323	-	1,95	2.551	-1.083
63,0	31,0	1,80	4,15	2,35		0,35	3,80	1.445	-18	306	0,59	3,56	2.180	-4	494	1,18	2,98	3.373	120	910	1,76		3.909	370		2,35	4.116	-1.213
71,0	36,0	2,00	4,60	2,60	1,30	0,39	4,21	1.748	-17	304	0,65	3,95	2.639	-4	491	1,30	3,30	4.088	115	904	1,95	2,65	4.744	358	1,238	2,60	5.004	-1.195

Sistema de freno mecánico



Aplicación:

Los sistemas de freno de vehículos pesados están diseñados para ser accionados hidráulicamente. En la mayoría de los casos, el frenado se realiza cuando el fluido a presión empuja los discos de fricción contra unas pletinas que giran solidarias al eje de giro. La cantidad de fricción entre ambas partes controla la deceleración del vehículo. Sin ningún otro sistema de seguridad adicional, este diseño tiene una fiabilidad limitada. Si se produce una fuga en el circuito hidráulico, o el cilindro pierde presión por cualquier motivo, el freno puede fallar.

Solución:

El diseño mecánico de seguridad usa muelles de platillo **SPIROL**®. Bajo circunstancias normales, el sistema hidráulico mantiene una presión constante sobre el apilado en serie de muelles de platillo. Si la presión falla, los muelles se descomprimen para accionar el mecanismo de seguridad del freno. Un muelle helicoidal no es capaz de proporcionar la fuerza requerida (en el espacio disponible) para accionar los frenos. La fiabilidad de este sistema de seguridad depende de la calidad y consistencia de los muelles de platillo. En esta delicada aplicación, las prestaciones y el nivel de predicción de los muelles de platillo mejora la calidad del producto y garantiza una seguridad total.

Los muelles de platillo SPIROL tienen una gran y consistente capacidad de almacenar energía potencial mecánica. El diseño cónico de los muelles de platillo SPIROL hace que sus propiedades de resorte sean más predecibles que los tradicionales muelles helicoidales. Los muelles de platillo también son capaces de proporcionar más fuerza en menos espacio. Normalmente se apilan en grupos para alcanzar los ratios de resorte de cada aplicación específica: un apilado en serie proporciona menos fuerza contra más recorrido; un apilado en serie proporciona

más fuerza contra menos recorrido. Las precisas tolerancias de cada uno de los muelles proporciona una incomparable capacidad de predicción del apilado (tanto en serie como en paralelo).

Los muelles de platillo SPIROL también permiten predecir la duración a fatiga. El análisis de las tensiones habilita conocer el ciclo de vida mínimo de los muelles de platillo (sueltos o apilados) al ser calculado como parte del diseño de la aplicación.

APLICACIONES CON MUELLES DE PLATILLO

Cabezal de herramienta estación CNC

la pieza está fijada.

Aplicación:

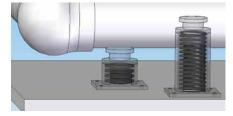
Los cabezales de los tornos de CNC están diseñados para sostener una pieza mientras se mecaniza. El cabezal usa unas mordazas para soltar la pieza cuando se completa el trabajo y sujetar de nuevo la siguiente pieza. Cuando se está poniendo la máquina a punto, la fuerza en la mordaza debe ser calibrada de forma precisa para prevenir tanto que se mueva la pieza (si la fuerza es demasiado baja) como que sea aplastada por la propia mordaza (si la fuerza es demasiado alta) lo que supondría que el producto acabado fuera rechazado.

Esta calibración depende de la geometría y el material del producto final. Después de la calibración, la calidad del producto acabado recae en la consistencia de la fuerza de la mordaza durante miles de ciclos.

Solución:

Este alto grado de fiabilidad es proporcionado por los muelles de platillo **SPIROL**. Cuando la mordaza se abre, 16 muelles de platillo SPIROL apilados en serie se comprimen por un cilindro hidráulico. Cuando el cilindro deja de hacer fuerza, los muelles de platillo SPIROL proporcionan la fuerza idónea para cerrar la mordaza sobre la pieza.

Soportes para tuberías de sistemas industriales


Aplicación:

Como la norma estándar ASME para tuberías de presión indica, un diseño apropiado es esencial para el rendimiento y seguridad de los sistemas de tuberías. Los sistemas industriales de tuberías tienen normalmente conexiones roscadas entre los tramos de tubería, rectas o acodadas. Al usarse estas uniones estáticas para soportar el peso, se necesitan soportes dinámicos que absorban las variaciones de cargas en el sistema de tuberías.

Solución:

Por ejemplo, en intercambiadores de calor, los muelles de platillo SPIROL se usan para absorber dilataciones térmicas. Como la temperatura del fluido dentro de la tubería cambia, la tubería se dilatará (al calor) y se contraerá (al frío) según el caso. Los muelles de platillo SPIROL sujetan el sistema manteniendo una presión constante a cualquier temperatura. Esta consistencia se transmite a las conexiones entre tuberías, y resulta esencial para mantener la estanqueidad. Una buena conexión previene fugas en el circuito y reduce costosos mantenimientos.

Los muelles de platillo SPIROL ofrecen una ventaja sobre los muelles helicoidales, ya que proporcionan un desplazamiento equivalente en una fracción del espacio. En muchas ocasiones, como en la brida inferior de un intercambiador de calor, se requiere esta reducción de espacio. Los muelles de platillo SPIROL son la solución para proporcionar una sujeción robusta de bajo mantenimiento para sistemas industriales de tuberías.

En este ejemplo, un muelle helicoidal no puede proporcionar el soporte correcto dada la limitación de espacio. La única opción para proporcionar la fuerza y desplazamiento requeridos en el limitado espacio es un apilado de muelles de platillo.

PIROL Soluciones innovadoras de fijación. Menores costos de ensamble.

Para conocer las especificaciones actualizadas y la gama de producto estándar consulte www.SPIROL.com.

Los ingenieros de aplicaciones de SPIROL revisan los requisitos especificos de su aplicación y colaboran con sus ingenieros de diseño para recomendar la mejor opción de ensamble. Una manera de lanzar este proceso de ingeniería es a través del portal Ingeniería de Optimización de Aplicaciones en www.SPIROL.com.

Centros Técnicos

Europa SPIROL España

08940 Cornellà de Llobregat Barcelona, España Tel. +34 93 669 31 78 Fax. +34 93 193 25 43

SPIROL Francia

Cité de l'Automobile ZAC Croix Blandin 18 Rue Léna Bernstein 51100 Reims, Francia Tel. +33 (0)3 26 36 31 42 Fax. +33 (0)3 26 09 19 76

SPIROL Reino Unido

17 Princewood Road Corby, Northants NN17 4ET Reino Unido Tel. +44 (0) 1536 444800 Fax. +44 (0) 1536 203415

SPIROL Alemania

Ottostr. 4 80333 Munich, Alemania Tel. +49 (0) 89 4 111 905 71 Fax. +49 (0) 89 4 111 905 72

SPIROL República Checa

Sokola Tůmy 743/16 Ostrava-Mariánské Hory 70900, República Checa Tel/Fax. +420 417 537 979

SPIROL Polonia

ul. Solec 38 lok. 10 00-394, Warszawa, Polonia Tel. +48 510 039 345

Américas

Las SPIROL México Avenida Avante #250

Parque Industrial Avante Apodaca Apodaca, N.L. 66607 Mexico Tel. +52 (01) 81 8385 4390 Fax. +52 (01) 81 8385 4391

SPIROL EEUU Corporativo

30 Rock Avenue Danielson, Connecticut 06239 **Estados Unidos** Tel. +1 (1) 860 774 8571 Fax. +1 (1) 860 774 2048

SPIROL EEUU división lainas

321 Remington Road Stow, Ohio 44224 Estados Unidos Tel. +1 (1) 330 920 3655 Fax. +1 (1) 330 920 3659

SPIROL Canadá

3103 St. Etienne Boulevard Windsor, Ontario N8W 5B1 Canadá Tel. +1 (1) 519 974 3334 Fax. +1 (1) 519 974 6550

SPIROL Brasil

Rua Mafalda Barnabé Soliane, 134 Comercial Vitória Martini, Distrito Industrial CEP 13347-610, Indaiatuba, SP, Brasil Tel. +55 (0) 19 3936 2701 Fax. +55 (0) 19 3936 7121

Pacífico

Asia/EI SPIROL Asia 1st Floor, Building 22, Plot D9, District D

No. 122 HeDan Road Wai Gao Qiao Free Trade Zone Shanghai, China 200131 Tel. +86 (0) 21 5046 1451 Fax. +86 (0) 21 5046 1540

SPIROL Corea

160-5 Seokchon-Dong Songpa-gu, Seoul, 138-844, Corea Tel. +86 (0) 21 5046-1451 Fax. +86 (0) 21 5046-1540

e-mail: info-ib@spirol.com

